Code: 20EC6401

II B.Tech - II Semester - Regular Examinations - MAY 2024

DIGITAL ELECTRONICS DESIGN WITH VHDL (HONORS in ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
					Marks			
UNIT-I								
1	a)	What is VHDL? Write its capabilities.	L2	CO1	7 M			
	b)	Explain design flow of digital circuit.	L2	CO1	7 M			
OR								
2	a)	Explain various modeling styles of VHDL.	L2	CO2	7 M			
	b)	Explain the role and significance of various	L2	CO2	7 M			
		operators used in VHDL.						
UNIT-II								
3	a)	How does VHDL handle concurrent and	L3	CO3	7 M			
		sequential statements? Explain with an						
		example.						
	b)	Describe entity and architecture of VHDL	L3	CO1	7 M			
		using 2-input OR gate.						
	OR							

4	0)	Write VHDL code for multiplexer using	L3	CO3	7 M		
4	a)		LJ	CO3	/ 1 V1		
		data flow style of modeling.					
	b)	What is component instantiation? Write	L3	CO1	7 M		
		VHDL code for 1-bit full adder using half					
		adder.					
UNIT-III							
5	a)	Write syntax of package declaration in	L3	CO1	7 M		
		VHDL.					
	b)	Explain package body in VHDL with	L3	CO3	7 M		
		syntax.					
OR							
6	a)	Explain what is meant by test-bench in	L3	CO3	7 M		
		VHDL and how do you construct a					
		test-bench for 2-input AND gate.					
	b)	Write the differences between functions and	L3	CO1	7 M		
		procedures in VHDL.					
UNIT-IV							
7	a)	Compare combinational and sequential	L3	CO1	7 M		
		circuits. Write VHDL code for D-flip-flop					
		using behavioral style of modeling.					
	b)	Explain state table of SR latch with FSM	L3	CO3	7 M		
		model representation.					
OR							
8	a)	Write VHDL code for 4-bit asynchronous	L3	CO3	7 M		
		up counter using behavioral modeling.					
	b)	Explain behavioral modeling using flip-	L3	CO3	7 M		
		flops with suitable examples.	_				
	1	<u> </u>					

UNIT-V									
9	a)	Explain architecture of PLA with a neat	L3	CO4	7 M				
		diagram.							
	b)	Write the differences among PROM, PLA	L3	CO4	7 M				
		and PLD in terms of fuses, structure, and							
		application.							
OR									
10	a)	Explain the architecture of Xilinx Xc 4000.	L3	CO4	7 M				
	b)	What is the principle of one hot encoding?	L3	CO4	7 M				
		Compare it with normal encoding with 2-bit							
		counter.							